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Abstract

We developed a low order Mimetic Finite Difference (MFD) discretization for the equations
of magnetohydrodynamics (MHD) in two space dimensions. These equations describe the
evolution of the electric and magnetic fields in the presence of prescribed velocity field. The
method is designed to work on general polygonal meshes and preserves the divergence-free
condition on the magnetic field. The electric field is discretized at the vertices/nodes and the
magnetic field uses edge-based discretization. The method reconstructs the magnetic field to
extract nodal values necessary to approximate some terms present in Ohm’s law. We test the
robustness of our numerical scheme on three different types of meshes: with triangular elements,
quadrilateral and unstructured polyhedrons obtain from a Voronoi tesselation. Analysis of the
convergence for each of the aforementioned mesh types is presented. We finish with a test
problem that shows the method is capable of modelling magnetic reconnection.
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1 Introduction
Interest in the behavior of plasmas has skyrocketed in the modern age with applications ranging
from fusion-based nuclear power to low power thrusters for contemporary spacecraft. Since the
late 1930s or beginning of 1940s, efforts have been devoted to models that are faithful to its
dynamics, an approach that has proven successful and has become standard is to consider plas-
mas as magnetized fluids, an area called magnetohydrodynamics or MHD for short. Therefore,
the description of these plasmas follow from a blending together of electromagnetic theory and
fluid flow. Research in MHD is driven at a minimum by four communities: Astrophysicists that
study accretion discs and the dynamics that rule stars, planetary scientists that are interested
in the generation of magnetic fields by the core of planets, plasma physicists whose interest lies
in the confinement of plasmas by means of external magnetic fields and engineers which have
found that with external magnetic fields they can control the motion of liquid metals leading to
a revolution in metallugical techniques in industry.

There are different types of models in MHD differing by the version of Ohm’s law employed.
The simplest is that of ideal MHD, the main assumption being that the fluid is considered to
be a perfect conductor, here Ohm’s law is

~E +~u ×~B = 0,

where ~E , ~u and ~B represent the electric field, fluid flow velocity and magnetic field respectively.
Although ideal MHD has proven to be accurate in many applicacions, Lenz’s law dictates that
the magnetic field lines must move with the fluid even as it is twisted or distorted, a result called
Alfvén’s theorem, and is therefore incapable of describing important features of the behaviour
of plasmas like magnetic reconnection, a phenomenon in which the magnetic field line change
topology. An alternative is referred to as resistive MHD and differs in that version fo Ohm’s
law employed is

~E +~u ×~B = ν~J .

Introducing ~J as the current density and ν as the resistivity. However, if the magnetic recon-
nection is fast then resistive MHD proves insufficient in its description.

In the absence of a magnetic field electrical currents, in a conductor, flow in a straight line.
However, if a magnetic field with a non-negligible component perpendicular to the flow of the
charges is present then these particles experience a force, the Lorentz force, that curves the path
these particles follow leading to an accumulation of charge in the sides of the conductive material.
The outcome being a voltage that runs accross the conductor and an uneven distribution of
charge. This phenomenon is referred to as the Hall effect and including this effect in our MHD
model leads to a robust description of the behaviour of a plasma that is effective in describing
even complicated phenomena like fast magnetic reconnection. From a mathematical perspective
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the difference lies in adding a new term, a non-linear term, to Ohm’s law leading to the system

Faraday’s Law
∂

∂t
~B =−∇×~E , (1a)

Ohm’s Law With Hall Effect ~E =−~u ×~B +ν~J +C~J ×~B , (1b)

Ampere’s Law ~J =∇×~B , (1c)

A model termed as Hall MHD which we will take as valid in bounded volume D with smooth
boundary. It is important to note that (1) is not a complete system if the velocity is unknown,
a larger system including equations arising from conservation principles would complete the
system. However, in this report we will consider that the flow is controlled and therefore ~u is a
known quantity. A detailed overview of MHD is the one presented in [3].

Hall MHD is notorious for its complicated structure and very little theoretical analysis has
been developed, a more fruitful approach is develop numerical techniques to approximate so-
lutions, see for example the finite difference methods developed in [1]. Hence, the aim of this
report is to develop a numerical scheme to compute approximations of the electric and mag-
netic fields as they are described in (1) using the Mimetic Finite Difference (MFD) method.
Differential geometry and PDE theory based on functional analysis provide a powerful set of
tools to analyse systems like that of (1). It is the guiding philosophy of MFD to construct, on a
sequence of meshes, a discrete version of tensor calculus from where a discrete mimicry of the
techniques in differential geometry and PDE theory can be formulated. The advantages of the
MFD framework lie in the generality of the meshes it admits, a topic that will be discussed in
section 3, and in the fact that the framework gives rise to a family of schemes from where some
schemes may be optimal for different modelling purposes: dispersion relations, maximum prin-
ciples, a process called M-adaptation. A recommended source for theory on the MFD method
is [2] and for the process of M-adaptation [5].

The report is organized as follows: we begin by downscaling (1) to a problem in two dimen-
sions then we postulate the mimetic formulation which which is proceeded by the definition of
degrees of freedom and the mimetic matrices that appear in the formulation, the report ends
with an exposition of the numerical experimentation.

2 Problem formulation
Although the ultimate goal is to solve the system (1), in order to avoid much of the computa-
tional complexity, as a first step, we will reduce this problem to one in two dimensions this is
the main goal of the present section.

Let us begin by breaking up the different vector quantities in (1) into their components on
the plane and those in the z−direction. In what remains of this report we shall denote them as
follows

~u =
(
u

uz

)
, ~E =

(
E
Ez

)
, ~J =

(
J
Jz

)
and ~B =

(
B
Bz

)
.

Moreover let curl represent the 1−D to 2−D rotational operator, curl the 2−D to 1−D
rotational and e1,e2 the canonical basis in R2. Using this notation we can decompose the
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operators in (1) into

∇×~E =
(
curlEz − ∂

∂z Ey e1 + ∂
∂z Ex e2

curlE

)
~u ×~B =

(
u×Bz +uz ×B

u×B
) ∇×~B =

(
curlBz − ∂

∂z By e1 + ∂
∂z Bx e2

curlB

)
~J ×~B =

(
J×Bz + Jz ×B

J×B
)

.

(2)

We proceed to assume that the evolution of the electric and magnetic fields, on the plane,
depends exclusively on the variables proper to the plane rather than what may occur in the z−
direction. This is to say that

∂

∂z
B=~0 and

∂

∂z
E=~0, (3)

This assumption, together with the identities in (2), allows us to express the three dimensional
rotational in terms of the lower dimensional rotational operators as

∇×~E =
(
curlEz

curlE

)
and ∇×~B =

(
curlBz

curlB

)
,

leading us to the decoupling of (1) featured below{
∂
∂t B=−curlEz
∂
∂t Bz =−curlE (4a)

{
E=− (u×Bz +uz ×B)+νJ+C (J×Bz +νJz ×B)

Ez =−u×B+νJz +CJ×B (4b)

{
J= curlBz

Jz = curlB
(4c)

We will further assume that the motion of the gas and the evolution of the magnetic field in
the z−direction are controlled, this is to say that ~u and Bz are known. Therefore, the problem
that we will be considering is as follows.

Find B,Ez , Jz such that :

∂

∂t
B=−curlEz

Ez =−u×B+νJz +CJ×B
Jz = curlB,

(5)

where J= curlBz and u are known. This system can, equivalently, be written as bellow.

Find B,Ez such that : (6a)
∂

∂t
B=−curlEz (6b)

Ez =−u×B+νcurlB+CJ×B. (6c)
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It is important to recall that, from electromagnetic theory, magnetic fields must be solenoidal.
This condition and assumption (3) imply that

∂2

∂z2 Bz = div2
∂

∂z
B+ ∂2

∂z2 Bz = ∂

∂z
div3~B = 0,

an immediately consequence is that Bz = a(x, y)z +b(x, y). If we strengthen this condition so
that ∂z Bz = 0 then

div3~B = div2B.

Hence if we guarantee that B at t = 0 is solenoidal then from equation (6b) we have that

0 = div2

(
∂B
∂t

+curlEz

)
= ∂

∂t
div2B,

in which case the the three dimensional divergence free condtion will remain true for all t > 0.
This is a property we will incorporate into our mimetic scheme.

3 The Mimetic Finite Difference Formulation
This section is dedicated to finding a discrete formulation for equation (6). We will present the
mimetic approximation to the continuous operators in the differential system while their precise
definition will be left for later sections.

Let Ω be the projection, onto the plane, of the three dimensional domain D introduced for
(1) and further assume that Ω is polygonal. And let us complete the system (6) by adding
initial and boundary conditions

Find B,E such that (7a)
∂

∂t
B=−curlE in Ω, (7b)

E =−u×B+νcurlB+CJ×B in Ω, (7c)
B(x, y,0) =B0(x, y) in Ω, (7d)
E(x, y, t ) = E0(x, y, t ) in ∂Ω. (7e)

Since, from this point forward, every problem posed will be in Rd , d = 1,2 then the subscript
z is unnecessary and will only make the notation heavier hence our choice to drop it. We will
distinguish quantities in R2 with bold outlines while scalar quantities will not be bold.

Let us introduce the spaces that will serve as setting for the rest of the report.

H(curl,Ω) :=
{

E :Ω→R : E ∈ L2(Ω),curlE ∈ (
L2(Ω)

)2
}

, (8a)

H
(
div,Ω

)
:=

{
B :Ω→R2 :B ∈ (

L2(Ω)
)2

,divB ∈ L2(Ω)
}

(8b)

, Moreover, we define H0(curl,Ω) as those functions in H(curl,Ω) that vanish on the boundary
of Ω. After the change of variables E = EInt+E0 the variational formulation of (7) reads:
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find B ∈C 1([0,∞),
(
L2(Ω)

)2
) and EInt ∈C ([0,∞), H0(curl,Ω)) such that∫

Ω

∂B
∂t

· B̃+
∫
Ω
curlE · B̃= 0 ∀B̃ ∈ (

L2(Ω)
)2 (9a)∫

Ω
ν−1EIntẼ −

∫
Ω
BcurlẼ −

∫
Ω
ν−1 (CJ−u)×BẼ =−

∫
Ω
ν−1E0Ẽ ∀Ẽ ∈ H0(curl,Ω) (9b)

B(x, y,0) =B0(x, y) in Ω, (9c)

where we assume that the resistivity, ν, is strongly elliptic, i.e. that there exists κ1,κ2 > 0 such
that

κ1 ≤ ν(x, y) ≤ κ2 almost everywhere in Ω.

Let, for h ∈ (0,DiamΩ), Ωh represent a mesh of Ω with mesh size h that satisfies the
regularity conditions presented in [4] which, for the sake of completion, we list below

HG Star-shape regularity : there exists a positive integer Ns and a positive real number ρs > 0
such that every mesh Ωh admits a sub-partition Sh into shape-regular tetrahedra such
that:

HG1 every Polyhedron E in Ωh has a Lipschitz boundary and admits a decomposition made of
less than Ns tetrahedra.

HG2 the shape regularity of the tetrahedra E of Sh is defined as follows: the ratio between
the radius rT of the largest inscribed ball and the diameter hT of the tetrahedron T is
bounded from below by ρs > 0.

HG3 There exist a positive number τ∗ such that each element is star shaped with respect to
all points in a ball of radius τ∗hE centered at an internal point of E .

In the Mimetic Method, we define discrete analogs of B and E which we will denote Bh

and Eh respectively and assume that they belong to vector spaces Eh and Vh . Let Vh,0 be the
analog of functions in H0(curl,Ω), with these definitions we can pose a discrete mimicry of the
variational formulation (9) which we present below and

Find Bh ∈C 1([0,∞),Eh) and Eh,Int ∈C ([0,∞),Vh,0) such that:[
B̃h ,

∂

∂t
Bh

]
Eh

+
[
B̃h ,curlh(Eh,Int+Eh,Bound)

]
Eh

= 0 ∀B̃h ∈ Eh , (10a)[
Ẽh ,Eh,Int

]
Vh

− [
curlh Ẽh ,Bh

]
Eh

− [
Ẽh ,Bh

]
u,J =−

[
Ẽh ,Eh,Bound

]
Vh

∀Ẽh ∈ Vh,0, (10b)

Bh(0) =I E
h (B0). (10c)

Here the approximation of the electric field is given by Eh = Eh,Int+Eh,Bound, I E
h takes functions

in H
(
div,Ω

)
and returns their discrete representation in Eh and curlh : Vh → Eh is a discrete

analog of the continuous vector rotational. Moreover, the discrete bilinear forms presented are
approximations of the quantities featured

[
Ẽh ,Eh

]
Vh

≈
∫
Ω
ν−1ẼE ,

[
B̃h ,Bh

]
Eh

≈
∫
Ω
B̃ ·B, [Eh ,Bh]u,J ≈

∫
Ω
ν−1E(u−CJ)×B. (11)
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4 Definition Of Degrees Of Freedom And Primary
Operators
In this section we define the discrete representation of functions in H(curl,Ω), H

(
div,Ω

)
and

the operators that act on these spaces, namely the rotational and divergence.
As before let, for h ∈ (0,DiamΩ), the set Ωh represent a mesh of Ω with mesh-size h satisfying

the HG, HG1-HG3 conditions in the previous section. Moreover define V , E , F be the sets of
vertices, edges and elements in Ωh . For functions in H(curl,Ω) that are sufficiently regular we
define their interpolation, I V

h , by

I V
h (E) := (Ev )v∈V , Ev = E(v).

Likewise, the interpolation of functions in H
(
div,Ω

)
and L2(Ω) will be

I E
h (B) := (Be )e∈E , Be = 1

|e|
∫

e
B · n̂d`, I F

h (p) := (
p f

)
f ∈F

, p f =
1

|P |
∫

P
pd A, (12)

respectively, where n̂ is a unit-vector normal to the edge e = (v1, v2) that we will pick as by
rotating the unit tangent, on e, in the counterclockwise direction.

The image of I F
h , I E

h and I F
h will be denoted Vh , Eh and Fh and referred to as the set

of vertex-based function edge-based and element-based functions respectively.
Let us proceed to define the primary opertaors. The primary curl operator, denoted curlh :

Vh → Eh , evaluated on an edge e with endpoints v1 and v2 is

(
curlhEh

)
e=(v1,v2) =

(
Ev2 −Ev1

|e|
)

. (13)

A moment’s reflection on the relation between the unit tangent, τ̂, along an edge, e and n̂ will
reveal that

∇E · τ̂= curlE · n̂ (14)

Assuming that n̂ is obtatined by rotating τ̂ in the counterclockwise direction, furthermore
notice that, for e = (v1, v2), from (14) and the fundamental theorem of line integrals we can
deduce that(

curlh ◦I V
h (E)

)
e=(v1,v2)

= E(v2)−E(v1)

|e| =

= 1

|e|
∫

e
∇E · τ̂d`= 1

|e|
∫

e
curlE · n̂d`=

(
I E

h ◦curl(E)
)

e
. (15)

Tha above statement shows that the codomain of curlh is Eh , as previously stated. Let us now
define the discrete divergence, we can do this by a mimicry of the divergence theorem on a cell
P = (e1, ...eN ), note that∫

P
divBd A =

N∑
i=1

βei

∫
ei

B · n̂d`=
N∑

i=1
|ei |βei I

E
h (B)ei , (16)
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where βe ∈ {−1,1} is picked in order to guarantee that the vector βe n̂ has the direction required
by the divergence theorem. Inspired by (16) we define the discrete divergence, divh : Eh →Fh ,
by (

divhBh
)

P=(e1,...,eN ) =
1

|P |
N∑

i=1
|ei |βei (Bh)ei

. (17)

Hence, from the definition of degrees of freedom in Fh presented in (12) and equations (16)
and (17) we find that (

divh ◦I E
h (B)

)
P
= 1

|P |
∫

P
divBd A =

(
I F

h ◦div(B)
)

P
, (18)

which, again, ensures that the codomain of this opertator is the one previously stated. These
results can be summarized in the following theorem.

Theorem 4.1. The diagram

H(curl,Ω)
curl−−−−→ H

(
div,Ω

) div−−−−→ L2(Ω)yI V
h

yI E
h

yI F
h

Vh
curlh−−−−→ Eh

divh−−−−→ Fh

is commutative and the chain

{0}
0−−−−→ Vh

curlh−−−−→ Eh
divh−−−−→ Fh

0−−−−→ {0}

is short and exact.

Proof. The commuativity of the diagram above follows from equations (15) and (18). Notice
that for Eh ∈ Eh and element P = (e1, ....,eN ) where ei = (vi , vi+1) then

divh ◦curlhEh = 1

|P |
N∑

i=1
(Eh)vi+1 − (Eh)vi = (Eh)vN+1 − (Eh)v1 ,

but since the boundary of P is a closed loop we must have that vN+1 = v1 and so

divh ◦curlhEh = 0.

To finish the proof of exactness of the short chain presented in the statement of the theorem
suppose that Bh ∈ Eh is such that divhBh ≡~0 then if we select E to be such that when restricted
to an element P it solves

−4p = 0 in P

αe∇p · n̂ = (Bh)e on e forall e in the boundary of P.

Since div∇p = 0 then there must exist E ∈ H(curl,Ω) such that ∇p = curlE defining B= curlE
we find that for any edge(

I E
h (B)

)
e
= 1

|e|
∫

e
curlE · n̂d`= αe

|e|
∫

e
∇p · τ̂d`= (Bh)e ,

and by the commuting property

Bh =I E
h (B) = curlh

(
I V

h (E)
)

.

This completes the proof.
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5 Discretization
In this section we present the algorithm derived from the mimetic method. We begin with
the mimicry of the variational fomulation presented in the set of equations (10) which, for the
convenience of the reader, we rewrite below

Find Bh ∈C 1([0,∞),Eh) and Eh,Int ∈C ([0,∞),Vh,0) such that:[
B̃h ,

∂

∂t
Bh

]
Eh

+
[
B̃h ,curlh(Eh,Int+Eh,Bound)

]
Eh

= 0 ∀B̃h ∈ Eh , (19a)[
Ẽh ,Eh,Int

]
Vh

− [
curlh Ẽh ,Bh

]
Eh

− [
Ẽh ,Bh

]
u,J =−

[
Ẽh ,Eh,Bound

]
Vh

∀Ẽh ∈ Vh,0,

(19b)

Bh(0) =I E
h (B0). (19c)

Each of the bilinear forms in the expressions above will be represented using a matrix, whose
constructions is topic for the proceeding sections. Let us introduce these matrices[

B̃h ,Bh
]
Eh

= B̃T
hMEBh ,

[
Ẽh ,Eh

]
Vh

= Ẽ T
hMV Eh and

[
Ẽh ,Bh

]
u,J = Ẽ T

hMu,JBh .

The matrices, MV and ME are symmetric and positive definite while the symmetry and defini-
tiveness of Mu,J will depend on the term u−CJ. With these definitions we can write (19a)
as

B̃T
hME

∂

∂t
=−B̃T

hME curlh(Eh,Int+Eh,Bound) ∀B̃h ∈ Eh ,

which immediately implies that

∂

∂t
Bh =−curlh(Eh,Int+Eh,Bound). (20)

To find a discretization for (19b) that we can implement we introduce the diagonal matrix D
defined such that Di ,i = 1 if and only if the i -th node in our ennumeration is not on the boundary
of Ωh , let Di ,i = 0 otherwise. The importance of D lies in the fact that left multiplication by
this matrix takes an element of Vh to Vh,0. Making use of the matrix D we can write (19b) as

Ẽ T
h DMV Eh,Int− Ẽ T

h DcurlThMEBh −DMu,JBh =−Ẽ T
h DMV Eh,Bound ∀Ẽh ∈ Vh ,

or equivalently

DMV Eh,Int−DcurlThMEBh −DMu,JBh =−DMV Eh,Bound, (21)

where, EInt is zero on every entry related to the boundary nodes and Eh,Bound is zero on every
interior node. Recalling that Eh = Eh,Int+Eh,Bound and keeping in mind that not all entries of
Eh are unknown we can write (20), (21) and (19c) as

∂

∂t
Bh =−curlhEh (22a)

DMV Eh = D
(
curlThME +Mu,J

)
Bh (22b)

Bh(0) =I E
h (B0). (22c)
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Now we discretize the time variable on a staggered grid. Equations (22) become

Bn+1
h =Bn

h −∆tcurlhE n+1/2
h (23a)

DMV E n+1/2
h = D

(
curlThME +Mu,J

)Bn+1
h +Bn

h

2
. (23b)

Plugging (23a) into (23b) we arrive at

D

(
MV + ∆t

2

(
curlThME +Mu,J

)
curlh

)
E n+1/2

h = D
(
curlThME +Mu,J

)
Bn

h .

Hence our numerical approximation can be computed by

Solve : D

(
MV + ∆t

2

(
curlThME +Mu,J

)
curlh

)
E n+1/2

h,Int =

= D
(
curlThME +Mu,J

)
Bn

h −D

(
MV + ∆t

2

(
curlThME +Mu,J

)
curlh

)
E n+1/2

h,Bound,

Plug into: E n+1/2
h = E n+1/2

h,Int +E n+1/2
h,Bound,

Take a Step Forward: Bn+1
h =Bn

h −∆tcurlhE n+1/2
h ,

where the first step is given by the initial conditions (19c), B0
h = I E

h (B0). It is important to
note that, in order to solve the first system in our algorithm we must extract a submatrix that
acts on the components of Eh,Int related to the interior nodes.

Notice that, by theorem 4.1, taking discrete divergence in equation (23a) we find that
divhBn+1

h = divhBn
h therefore if the initial conditions on B are divergence free then our discrete

approximations will preserve this property.

6 Construction Of Mimetic Matrices
Now we turn our attention to the construction of the matrices MV ,ME and Mu,J, these are
the result of an assembly of local matrices on the elements of a mesh, Ωh , hence our focus will
be on defining the local matrices from which they are assembled. In order to ease the notation
we will refer to these local matrices with the same symbol as the global matrices, there is little
chance for confusion since the only reference to the global matrices happens in the first sentence
of this section.

Let P be an element of Ωh which shall remain fixed. On P we will define two spaces of
continuous functions, the space of reconstruction of dimension n and denoted Sh and one of
its subspaces, with basis {q1, ..., qñ}, refered to as the space of test functions and represented by
T .

The procedure we will describe next will define MV and ME , the procedure for Mu,J is
unique and will be explained later. Let, for the sake of this discussion, D represent either the
symbol V or E and N be a rectangular matrix whose i -th row is I D

h (qi ). Moreover define the
vector Ri by the relation

∀E ∈Sh :
∫

P
E qi =I V

h (E)T Ri ,
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in the case where D = V and

∀B ∈Sh :
∫

P
B ·qi =I E

h (B)T Ri ,

if D = E and let R be a set whose i -th row is Ri . Having constructed the rectangular matrices
N and R, the definition of MD follows the formula

MD = R(RT N )−1RT +λ(Id−N (N T N )−1N T ),

where I d represents the identity matrix and λ= 2
n trace(R(RT N )−1RT ), this formula is derived

in chapter 4 of [2]. In the next subsections we will construct N and R for the two matricesME ,
MV and we finish with the construction of Mu,J. All normal vectors are picked pointing out of
the element P and tangential vectors are picked in the counterclockwise direction as required
by the divergence and stokes theorem and the edges on the boundary of P are {ei }n

i=1.

6.1 Local Mass Matrix in Eh

In the case of Vh the spaces are

Sh := {
B : divB ∈R,B|e · n̂ ∈R for all e ∈ ∂P

}
and T := {∇p : p ∈ span(

x −xP , y − yP
)}

,

where (xp , yp ) represents the barycenter of P . By Green’s formula we must have that∫
P
B ·∇p =−

∫
P
divBp + ∑

e∈∂P

∫
e

pB · n̂e d`,

from the fact that B ∈Sh and that, by construction, p is of zero mean when it is a member of
T we have that ∫

P
B ·∇p = ∑

e∈∂P
B · n̂e

∫
e

pd`.

Thus for e = (ve
1 , ve

2), and edge of P , the fact that p is linear when restricted to e allows us to
compute the line integral on the right by the midpoint rule. This is to say that∫

e
pd`= |e|p(ve

3/2), ve
3/2 := ve

1 + ve
2

2
.

Therefore, ∫
P
B ·∇p = ∑

e∈∂P
B · n̂e p(ve

3/2)|e|. (24)

We want to find a matrix ME such that

[Bh ,Wh]Eh
:=BT

hME Wh ≈
∫

P
B ·W Bh =I E

h (B), Wh =I E
h (W),

is exact whenever W ∈T E and B ∈ SE
h . To ensure that this condition is satisfied it is important

to note that that, by our choice of reconstruction space, the i−th entry of Bh is B · n̂ei , thus
the identity (24) can be interpreted as

∫
P
B ·∇p =BT

h


p(ve1

3/2)|e1|
...

p(ven

3/2)|en |

 .
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Thus, testing this against {∇p1,∇p2} for p1 := x−xP and p2 := y − yP , a basis for T E we arrive
at arrive at ∫

P
B ·∇p1 =BT

h R1 and
∫

P
B ·∇p2 =BT

h R2

for

R1 :=


[1

2

(
xe1

1 +xe2
2

)−xP
] |e1|

...[1
2

(
xen

1 +xen
2

)−xP
] |en |

 and R2 :=


[1

2

(
ye1

1 + ye2
2

)− yP
] |e1|

...[1
2

(
yen

1 + yen
2

)− yP
] |en |

 ,

(25)

where ve2
1 := (xei

1 , yei
1 ) and ve2

1 := (xei
1 , yei

1 ). We will come back to this identity later. Let us
compute the projection of ∇p1 = (1,0)T . Pick and edge e = (ve

1 , ve
2) then

n̂e = 1

|e|
(

ye
2 − ye

1
xe

1 −xe
2

)
for ve

1 =
(

x1

y1

)
ve

2 =
(

x2

y2

)
.

Hence,
1

|e|
∫

e
∇p · n̂d`= ye

2 − ye
1

|e| ,

Therefore, the projection of ∇p1, denoted by N1, is given by

N1 :=

 |e1|−1
(
ye1

2 − ye1
1

)
...

|en |−1
(
yen

2 − yen
1

)
,

 .

Similarly the projection of ∇p2, called N2, is

N2 :=

 |e1|−1
(
xe1

1 −xe1
2

)
...

|en |−1
(
xen

1 −xen
2

)
 .

Finally R := [R1,R2] and N := [N1, N2].

6.2 Local Mass Matrix in Vh

Our reconstruction and test spaces are

Sh := {
E ∈ H(curl,Ω) : curlE ∈R2} ,

T V := {
curlv : v= (vx , vy )T , vx ∈ span(

y − yP
)

, vy ∈ span (x −xP )
}

,

where (xp , yp ), again, is the barycenter of P . By integrating by parts we arrive at the following
identity ∫

P
E curlv=

∫
P
curlE ·v+ ∑

e∈∂P

∫
e
v ·E × n̂e dS.

Due to the fact that E ∈ Sh and v ∈T we know that curlE ·v is of mean zero. Hence,∫
P

E curlv= ∑
e∈∂P

∫
e
v ·E × n̂e dS. (26)

12



For (ve
1 , ve

2)e ∈ ∂P we have that

E × n̂e = E τ̂ for τ̂= 1

|e|
(

xe
2 −xe

1
ye

2 − ye
1

)
and ve

1 =
(

xe
1

ye
1

)
, ve

2 =
(

xe
2

ye
2

)
.

Returning to (26) we find that for v= (vx , vy )T we have∫
P

E curlv= ∑
e∈∂P

1

|e|
∫

e
E

(
vx (xe

2 −xe
1)+ vy (ye

2 − ye
1)

)
dS. (27)

Now pick a basis for T V , say {curlv : v= (yP −y,0)T } then I V
h (curlv) = N := (1, ...,1) and by (27)∫

P
E curlv= ∑

e∈∂P

1

|e|
∫

e
E(yp − y)(xe

2 −xe
1)d`. (28)

Now parametrize the edge e as r (t ) = (ve
2 − ve

1)t + ve
1, 0 ≤ t ≤ 1 and write the corresponding

integral on the right of (28) as∫
e

E(yp − y)(xe
2 −xe

1)d`= |e|(x2
2 −xe

1)
∫ 1

0

[(
E(ve

2)−E(ve
1)

)
t +E(ve

1)
][

yP − (ye
2 − ye

1)t − ye
1

]
d t .

We use the following quadrature∫ 1

0
f (t )d t = 1

6
f (0)+ 2

3
f (1/2)+ 1

6
f (1).

It is important to note that this rule is exact for polynomials of second degree and, hence,∫
e
E(yp − y)(xe

2 −xe
1)d`=

= (xe
2 −xe

1)|e|
6

[(
E(ve

1)(yP − y1)
)+ 1

4

(
(E(ve

1)+E(ve
2))(2yP − ye

2 − ye
1)

4

)
+ (

E(ve
2)(yP − y2)

)]
.

The above leads us to∫
e

E(yp − y)(xe
2 −xe

1)d`=

= |e|(xe
2 −xe

1)

6

[(
(yP − ye

1)+ (2yP − ye
1 − ye

2)
)

E(ve
1)+ (

(yP − ye
2)+ (2yP − ye

1 − ye
2)

)
E(ve

2)
]

:= (29)

= |e|(ωe
1E(ve

1)+ωe
2E(ve

2)
)

.

If (e0, ...,en−1) are ordered sequentially then for e = (ve
1 , ve

2) in a counterclockwise direction
then by combining (28) and (29) we find that∫

P
E curlv= (

ω
en−1
2 +ωe0

1

)
E(ve0

1 )+
n−1∑
i=1

(
ω

ei−1
2 +ωei

1

)
E(vei

1 ).

Finally,

R =


ω

en−1
2 +ωe0

1
ω

e0
2 +ωe1

1
...

ω
en−2
2 +ωen−1

1

 , where
ωe

1 = 1
6 (xe

2 −xe
1)

[
(yP − ye

1)+ (2yp − ye
1 − ye

2)
]

ωe
2 = 1

6 (xe
2 −xe

1)
[
(yP − ye

2)+ (2yp − ye
1 − ye

2)
]

.
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6.3 Local Matrix Mu,J

The main difficulty in the construction of Mu,J lies in the fact that it needs to combine nodal-
based functions in Vh and edge-based functions in Eh . The strategy is, therefore, to estimate
(CJ−u)×B at the nodes and then using MV we can find an approximation for the required
bilinear form. We now focus on the construction of the necessary nodal values, note that CJ−u
is a known function hence its nodal values are straight forward to compute. However, for B
we have limited information, only its fluxes normal to the edges of P are known, this is enough
information to find the projection of B onto some subspaces of

(
L2(Ω)

)2.
Consider the subspace, V , of

(
L2(Ω)

)2 that is spanned by the set B := {P1,P2,P3} for

P1 =
(
1
0

)
, P2 =

(
0
1

)
and P3 =

(
x
y

)
.

We can find the projection, ΠB, onto V using the characterization that

ΠB= a

(
1
0

)
+b

(
0
1

)
+ c

(
x
y

)
and ∀P ∈ B :

∫
P
B ·P =

∫
P
ΠB ·P,

An approximation for the above integrals is posible using the inner product matrixME , yielding
the system

∀P ∈ B : I E
h (P)T

MEBh = aI E
h (P)T

ME P1 +bI E
h (P)T

ME P2 + cI E
h (P)T

ME P3.

Let N be the matrix whose columns are the interpolations of the functions in B , then this
system can be written as

NMEBh = N T
ME N~x,

where ~x = (
a,b,c

)T , and thus the constants in the expansion of B can be found by multiplying
the degrees of freedom of B, on the left, by MΠ := (N T

ME N )−1NME . Next we use the functions
in B to create a matrix ME that takes ~x and returns a row of function evaluations of ΠB at the
nodes and finally a matrix Mu,J than takes these nodal values and returns the necessary cross
product. In short

Mu,J =MV Mu,J ME MΠ.

The choice of the space V is not arbitrary, the finite element with B as its shape functions
and fluxes over the edges as the edges of P is unisolvent. If P is a triangle or a square this finite
element will be a low order Thomas Raviart element and proofs of unisolvency can be found in
classic books on the Finite Element Method, however, for general polygons the authors of this
document could not find a proof in the literature and thus a proof is provided below.

Proposition 6.1. The finite element with domain P , shape functions B and degrees of freedom
as fluxes over the edges is unisolvent.

Proof. Let B ∈V be such that Bh =I E
h (B) = 0. In one hand by the divergence theorem implies

that ∫
P
divB= 0.

On the other hand, since B= aP1 +bP2 +cP3 then divB= 2c yielding that c = 0. Thus, B ∈R2

is a vector that is orthogonal to every vector normal to the edges of P , a set which contains
a basis for R2, implying that B must be orthogonal to every vector on the plane from where
B= 0 follows as a consequence.
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7 Analysis Of The Rate Of Convergence
Let Ω represent the square [−1,1]×[−1,1], to study the degree of the method developed we will
use the following test problem

Find B and E such that:
∂

∂t
B=−curlE in Ω,

E =−u×B+νcurlB+CJ×B in Ω,

subject to the initial conditions: B(x, y,0) =
(

50e y +x sin(x y)−x cos(x y)
50ex − y sin(x y)+ y cos(x y)

)
in Ω, and

and boundary conditions: E(x, y, t ) = [
50(ex −e y )+cos(x y)+ sin(x y)

]
e t in ∂Ω,

where (CJ is taken to be

(CJ−u)(x, y) =
(

(x2+y2+1)(sin(x y)+cos(x y))
2(50ex−y sin(x y)+y cos(x y)) − (x2+y2+1)(sin(x y)+cos(x y))

2(50e y+x sin(x y)−x cos(x y))

)T
.

One can verify that the exact solution is

B(x, y, t ) =
(

50e y +x sin(x y)−x cos(x y)
50ex − y sin(x y)+ y cos(x y)

)
e t E(x, y, t ) = [

50(ex −e y )+cos(x y)+ sin(x y)
]

e t .

To check the robustness of the method we have selected three types of meshes presented below,
see Fig. 1.

Figure 1: The the elements of the mesh on the right are triangles, in the center are
perturbed squares and the rightmost is a voronoi tesselation.

The numerical results are summarized in the following tables, see Tab. 1, 2, 3.
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Mesh Size L2 Error for Electric Field L2 Error for Magnetic Field

0.10101 0.25767 2.56516
0.05019 0.08600 1.43769
0.02514 0.02541 0.87187
0.01252 0.00669 0.46168
0.00626 0.00165 0.22653

Table 1: Error Analysis Results On Triangular Meshes.

Mesh Size L2 Error On Electric Field L2 Error for Magnetic Field

0.16667 0.11444 0.82392
0.08333 0.04116 0.63345
0.04347 0.01266 0.33530
0.02174 0.00328 0.16884
0.01099 0.00079 0.08424

Table 2: Error Analysis Results On Perturbed Squares.

Mesh Size L2 Error On Electric Field L2 Error for Magnetic Field

0.12803 0.48467 4.41888
0.06773 0.17629 2.49006
0.03450 0.08945 1.20755
0.01748 0.01368 0.58791
0.00878 0.006616 0.02766

Table 3: Error Analysis Results On Voronoi Tesselations.

In order to clearly see the rate of convergence of the method we plotted the errors in tables
Tab. 1,2,3 in logarithmic scale in figures Fig. 2,3,4.
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Figure 2: Error For Triangular Meshes.

Figure 3: Errors For Perturbed Squares Meshes.

Figure 4: Errors For Voronoi Tesselations.
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8 A Model For Magnetic Reconnection
In order to model the phenomenon of magnetic reconnection we used the mimetic framework
presented to solve the problem where, again, Ω represents the square of side length 2 with
center at the origin

Find :B,E :

∂

∂t
B=−curlE in Ω,

E =−u×B+νcurlB+CJ×B in Ω,

B(x, y,0) =
(
tanh y

0

)
in Ω,

E(x, y, t ) = const on ∂Ω∫
∂Ω
B(x, y, t )× n̂d`=

∫
∂Ω
B(x, y,0)× n̂d`.

The process of magnetic reconnection can be clearly visible when plotting streamlines for
the magnetic field, see Fig. 5-9.

Figure 5: The left picture is that of the initial conditions, the right picture shows that
reconnection happens almost inmmediately.
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Figure 6: Withing less than a hundredth of the time unit two of the original streamlines
have already reconnected.

Figure 7: This pair depects exactly the moment a streamline reconnects.

19



Figure 8: Reconnection happens much slower after one tenth of the time unit.

Figure 9: Finally the streamlines reach a steady state as depicted above.

9 Conclusions
We successfully constructed a MFD method for the subset of the MHD equations. Given the
fact that the degrees of freedom of the electric field were placed at the nodes whereas normal
fluxes accross the edges were the degrees of freedom for the magnetic field, the discretization
of the term (CJ−u)×B is neither standard nor straight-forward. We resolved this complication
by, locally, finding an approximate projection of B onto a subspace of

(
L2(Ω)

)2, the global
approximation came about after an assembly. The inner products necessary were approximated
using the mimetic matrices on Vh and Eh .

Numerical experiments give indication that the method constructed is convergent of degree
two in the electric field and of order one in the magnetic field. However, in the case of general
Voronoi tesselations the error in the electric field, although it shows a decay towards zero, does
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not seem to approach a well defined slope when plotted in a logarithmic scale. Further numerical
experimentation is required to explain this behavior.

The method was shown robust enough to model slow magnatic reconnection as evidenced in
section 8, however fast magnetic reconnection is a non-linear phenomenon and the framework
presented does not seem capable of capturing it. The reason being that the physics happen in
three dimensions and not all the phenomena can be modelled in a smaller dimensional setting.
This work presents a clear way to carry this project forward: develop and implement a MFD
method in three dimensions, include more terms in ohms law namely:

E +u×B= νJ+CJ×B+K
DJ
Dt

,

where the above time derivative represents the material derivative. The final step would be to
couple this system with the fluid flow equations.
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